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Abstract

Background: Single-cell RNA-seq is a powerful tool for measuring gene
expression at the resolution of individual cells. A challenge in the analysis of
this data is the large amount of zero values, representing either missing data or
no expression. Several imputation approaches have been proposed to address
this issue, but they generally rely on structure inherent to the dataset under
consideration they may not provide any additional information, hence, are
limited by the information contained therein and the validity of their
assumptions.

Methods: We evaluated the risk of generating false positive or irreproducible
differential expression when imputing data with six different methods. We
applied each method to a variety of simulated datasets as well as to permuted
real single-cell RNA-seq datasets and consider the number of false positive
gene-gene correlations and differentially expressed genes. Using matched 10X
and Smart-seg2 data we examined whether cell-type specific markers were
reproducible across datasets derived from the same tissue before and after
imputation.

Results: The extent of false-positives introduced by imputation varied
considerably by method. Data smoothing based methods, MAGIC, knn-smooth
and dca, generated many false-positives in both real and simulated data.
Model-based imputation methods typically generated fewer false-positives but
this varied greatly depending on the diversity of cell-types in the sample. All
imputation methods decreased the reproducibility of cell-type specific markers,
although this could be mitigated by selecting markers with large effect size and
significance.

Conclusions: Imputation of single-cell RNA-seq data introduces circularity that
can generate false-positive results. Thus, statistical tests applied to imputed
data should be treated with care. Additional filtering by effect size can reduce
but not fully eliminate these effects. Of the methods we considered, SAVER
was the least likely to generate false or irreproducible results, thus should be
favoured over alternatives if imputation is necessary.
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(:5757:0 Amendments from Version 1

In the results, we have added a recently published auto-encoder
based imputation method, dca, to our comparison. In addition,
we have revised the splatter simulation dropout parameters to be
more representative of real single-cell RNASeq data and have
included a figure in the supplementary material to show the lower
range of values used result in simulated data resembling 10X
data whereas higher values resemble Smart-seq2 data.

We also revised several main text figures and added some
supplementary figures for clarity and added an ROC plot to
Figure 2 to show the trade-off between sensitivity and specificity
that is realized by each of the imputation methods. We have
added recommendations that imputation can be useful for
visualizing single-cell data, and that SAVER is generally the
safest method to use, but that all statistical tests, be the gene-
gene correlations, cluster-specific marker genes, or differential
expression, should be applied to un-imputed data.

We have revised the text for clarity, as well as to give additional
emphasis to the increases in sensitivity achieved by imputation,
and made the code used in this publication publicly available on
github: https://github.com/tallulandrews/F1000Imputation.

The Chan Zuckerberg Initiative (grant reference 183501) is added
to the Grant information section, as this was left out of the version 1.

See referee reports

Introduction

Single-cell RNA-seq (scRNA-seq) is a powerful technique
for assaying the whole transcriptome at the resolution of individ-
ual cells. Although experimental protocols have evolved rapidly,
there is still no strong consensus on how to best analyse the data.
An important challenge to analysing scRNA-seq data is the
high frequency of zero values, often referred to as dropouts, and
the overall high levels of noise due to the low amounts of input
RNA obtained from individual cells. Recently there have been
four methods published (Gong er al., 2018; Huang et al., 2018;
Li & Li, 2018; van Dijk er al., 2018) which attempt to address
these challenges though imputation, with several more under
development (Deng et al., 2018; Mongia et al., 2018; Moussa
& Mandoiu, 2018; Wagner er al., 2017). Several recently intro-
duced methods employ deep learning autoencoders for processing
scRNA-seq data, including imputation and data-smoothing
(Eraslan et al., 2019; Hu & Greene, 2018; Wang & Gu, 2018;
Wang et al., 2018).

Imputation is a common approach when dealing with sparse
genomics data. A notable example has been the improvements
to GWAS sensitivity and resolution when using haplotype infor-
mation to impute unobserved SNPs (Visscher er al., 2017).
Unlike scRNA-seq data, this imputation employs an external
reference dataset, often the 1000 Genomes project, to infer the
missing values (Chou er al., 2016). Such a reference does not
yet exist for scRNA-seq data, and thus imputation methods can
only use information internal to the dataset to be imputed. As a
result there is a degree of circularity introduced into the dataset
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following imputation which could result in false positive results
when identifying marker genes, gene-gene correlations, or
testing differential expression. Zero values in scRNA-seq may
arise due to low experimental sensitivity, e.g. sequencing sam-
pling noise, technical dropouts during library preparation, or
because biologically the gene is not expressed in the particular
cell. Thus, one challenge when imputing expression values is
to distinguish true zeros from missing values.

Many imputation methods, such as SAVER (Huang er al., 2018),
Drlmpute (Gong ef al., 2018) and sclmpute (Li & Li, 2018),
use models of the expected gene expression distribution to
distinguish true biological zeros from zeros originating from
technical noise. Because these gene expression distributions
assume homogenous cell populations, they first identify clusters
of similar cells to which an appropriate mixture model is fitted.
Values falling above a given probability threshold to originate
from technical effects are subsequently imputed. For example,
scImpute models log-normalized expression values as a mixture
of gamma-distributed dropouts and normally-distributed true
observations. Alternatively some scRNA-seq imputation methods
perform data smoothing. In contrast to imputation, which only
attempt to infer values of missing data, smoothing reduces noise
present in observed values by using information from neigh-
bouring data points. Both MAGIC (van Dijk er al., 2018) and
knn-smooth (Wagner er al., 2017) perform data smoothing for
single-cell data using each cell’s k nearest neighbours either
through the application of diffusion models or weighted sums
respectively.

Previous benchmarking of these imputation methods was based
on positive controls, i.e. the ability to recover true signals within
noisy data (Zhang & Zhang, 2018); the potential for false
signals to be introduced into a dataset by these imputation
methods was not considered, and it was concluded that most
imputation methods provide a small improvement. We consider
negative controls to evaluate the risks of introducing false posi-
tive when using imputation for single-cell datasets. Testing
of the four published imputation methods, MAGIC, SAVER,
scImpute, and DrImpute and one currently unpublished method,
knn-smooth, revealed that all methods can introduce false posi-
tive signals into data. While some methods, performed well on
simulated data, permuting real scRNA-seq data revealed high
variability in performance on different datasets. We show that
statistical tests applied to imputed data should be treated
with care, and that results found in imputed data may not be
reproducible across datasets.

Methods

Six different single-cell RNASeq imputation methods were
tested: SAVER (Huang ez al., 2018), Drlmpute (Gong ez al., 2018),
scImpute (Li & Li, 2018), dca (Eraslan er al., 2019), MAGIC
(van Dijk er al., 2018) and knn-smooth (Wagner er al., 2017).
These include all of the published imputation methods, at
present, an additional data smoothing approach, knn-smooth, to
contrast to the only published data smoothing method, MAGIC.
We have also included a single autoencoder-based method,
dca (Eraslan er al., 2019). Unless specified otherwise these were
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run with default parameters (Table 1). Each method was applied
to either the raw-counts or log2 counts per million normalized
data, as calculated scater (McCarthy e al., 2017), as appropriate.

Negative binomial simulations

As an initial test of imputation methods and to understand the
effect of various method-specific parameters on imputation we
simulated data from a negative binomial model, which is known
to be a good model of bulk and single-cell RNA-seq data (Griin
et al., 2014; Robinson & Smyth, 2007). Expression matrices
containing 1000 cells, equally spread across two cell-types, and
500 genes, with mean expression ranging from 103-10%, were
simulated. Half of the genes were differentially expressed (DE)
by an order of magnitude between the two cell-types, half were
drawn independently. Since there are no added dropouts in these
simulations the desired behavior for model-based imputation
methods is to leave the data as is. Whereas for data-smoothing
the desired behaviour would be to assign non-DE genes a con-
stant value across all cells. Ten such expression matrices were
independently simulated. Each imputation method was run on
each replicate with a range of parameter values (Table 1). Sig-
nificant gene-gene correlations were identified using Spearman
correlation with a conservative Bonferroni multiple testing cor-
rection (q < 0.05) to avoid distributional assumptions on the
imputed values. We specifically choose the Bonferroni correction
to avoid issues arising from an abundance of very low p-values
resulting from imputation of the strong DE genes present in
these simulations. A distorted p-value distribution would be
problematic as it violates the assumptions of the more typical
false discovery rate correction (Benjamini & Hochberg, 1995).

Correlations were calculated directly on the output of the
imputation methods which was on the count-scale for all meth-
ods except DrImpute for which both the input and output are on
a log-scale. However, since we used the non-parametric Spearman
correlation the effect of different scales is minimal and largely
restricted to distortions due to normalization biases and the
addition of a pseudo-count. Correlations involving not DE genes
or in the incorrect direction were considered false positives.
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Splatter simulations

Splatter (Zappia et al., 2017) was used to generate 60 simulated
single-cell RNASeq count matrices using different combina-
tions of parameters (Table 2). Each simulated dataset contained
1,000 cells split into 2-10 groups and 1,000-5,000 genes of
which 1-30% were differentially expressed across the groups.
For simplicity all groups were equally sized and were equally dif-
ferent from one another. Half the simulations assumed discrete
differentiated groups, whereas the other half used the continu-
ous differentiation path model. We also considered the effect of
four different amounts of added dropouts plus the no-added drop-
out model. These simulation parameters broadly matched real
scRNA-seq data, with lower dropout rates being more similar to
10X Chromium data and higher dropout rates being more similar
to Smart-seq2 data (Figure S1). Each simulated dataset was
imputed with each method using default parameters.

Accuracy of each imputation method was evaluated by test-
ing for differentially expressed (DE) genes between the groups
used to simulate the data. To avoid issues of different imputation
methods resulting in data best approximated by different
probability distribution, we employed the non-parametric Kruskal-
Wallis test (Kruskal & Wallis, 1952) with a 5% FDR to identify
significant DE genes. The Kruskal-Wallis test is the multi-group
extension of the Mann-Whitney-U test that performs a single
test per gene regardless of the number of groups to compare
ensuring equivalent power and multiple-testing corrections across
simulations. Since this test is relatively low-power it is likely
to underestimate the number of DE genes compared to alterna-
tives. To filter DE results by effect size, in addition to significance,
the magnitude of the DE (i.e. effect size) was estimated as
the maximum log2-fold-change across all pairs of clusters. Only
genes where the magnitude of the DE exceeded a specified
threshold and were significant after a 5% FDR were called as
DE in this case.

Permuted Tabula Muris datasets
Six 10X Chromium and 12 Smart-seq2 datasets were chosen
from the Tabula Muris (8) consortium data such that: i) there

Table 1. Imputation methods.

Method Model Parameter(s) Range Reference

sclmpute Log-normal = Dropout threshold 0-1 (default: 0.5) (Li & Li, 2018)
Number of clusters Correct value given the simulation

Drimpute* ZINB Remaining zeros 0-1 (default: 0) (Gong et al., 2018)
Number of clusters Correct value given the simulation

SAVER ZINB Which genes to impute  Top 1%—-100% most highly expressed (Huang et al., 2018)

(default: 100%)
MAGIC NA Diffusion time, 1-8 (default: allow algorithm to choose)  (van Dijk et al., 2018)

K neighbours
knn-smooth  NA
dca ZINB

K neighbours

Hidden layer size +5
others

5-100 (default: 12)
5-100 (default: number of cells / 20)
2-64 (default: 32) Software defaults

(Wagner et al., 2017)
(Eraslan et al., 2019)

“Note: All methods were applied to raw counts as intended by the authors and returned values on that scale, except for Drimpute which
as per the documentation was applied to log2(CPM+1) and returned log-scaled values. CPM = counts per million.
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Table 2. Splatter parameters.

nGenes* %DE Dropouts nGroups Method Seed
(total)* (midpoint)**
1000 1% None (45%) 2 Groups 8298
2000 10% 1(70%) 5 2900
5000 30% 2 (80%) 10
3(88%)
4 (94%)

*Randomly selected for each possible combination of the other four
parameters.

“*Numbers in parentheses indicate proportion of the expression matrix that
was “0” values.

were at least two cell types containing >5% of the total cells and
ii) there were between 500-5,000 cells after filtering (Table S1).
Each dataset was preprocessed to remove cell-types accounting
for <5% of total cells, and any cells not assigned to a named
cell-type. Genes were filtered to remove those detected in
fewer than 5% of cells.

We selected the two most similar cell-types in each dataset using
the Euclidean distance between their mean expression profiles.
Differential expression of each gene between these cell-types
was evaluated using a Mann-Whitney-U test, which is the two-
sample equivalent of the Kruskal-Wallis test, on the log2 library
size normalized counts (pseudo-count of 1). Genes with a raw
p-value > 0.2 were then permuted across the selected cell-types
to eliminate any residual biological signals. Permuted raw counts
were obtained by de-logging and de-normalizing the permuted
log2-normalized expression to avoid library-size confounders.

Each imputation method was applied to the full dataset after
permutation using default parameters (Table 1). False-positives
introduced by each imputation was assessed by applying the
Mann-Whitney-U test to test for differential expression between
the two chosen cell-types. A Bonferroni multiple-testing
correction was applied to ensure a consistent level of expected
total false positives of less than 1.

Reproducibility of markers

We utilized the six tissues for which there exists matching
Smart-seq2 and 10X Chromium data from the Tabula Muris (8)
to evaluate the reproducibility of imputation results. These data-
sets were filtered as described above, and any cell-types not
present in both pairs of the matching datasets were excluded.
Each imputation method was applied to the datasets without any
permutation.

Marker genes were identified in each imputed dataset using a
Mann-Whitney-U test, which is the two-sample version of the
Kruskal-Wallis test, to compare each cell-type against all others,
and effect size was calculated as the area under the ROC curve for
predicting each cell-type from the others (Kiselev er al., 2017).
Genes were assigned to the cell-type for which they had the
highest AUC. Significant marker genes were defined for each
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imputed dataset using a 5% FDR and an AUC over a particu-
lar threshold. Reproducibility was evaluated by determining the
number of genes that were significant markers in both of a
matching pair of datasets and were markers of the same cell-
type. We used marker genes rather than DE genes to simplify the
evaluation of reproducibility, since each gene was assigned to a
single cell-type per dataset rather than a matrix of fold-changes
across all pairs of cell-types. In addition, since these datasets
contained clearly distinct cell-types nearly all genes were differ-
entially expressed between some pairs of cell-types (e.g. B-cells
and lung stromal cells). The presence of such outliers could
potentially distort overall DE reproducibility measures.

Results

We tested three published imputation methods, SAVER (Huang
et al., 2018), sclmpute (Li & Li, 2018) and Drlmpute (Gong
et al., 2018), two data-smoothing methods MAGIC (van Dijk
et al., 2018) and knn-smooth (Wagner et al., 2017) and one
autoencoder-based method dca (Eraslan er al., 2019). We applied
each method with the default parameter values (Table 1) to data
simulated from a simple negative binomial, since technical noise
in scRNA-seq data has been observed to follow a negative bino-
mial distribution since technical noise in scRNA-seq data has
been observed to follow a negative binomial distribution (Griin
et al., 2014). All the imputation methods increased the sensitiv-
ity to detect gene-gene correlations between the lowly expressed
DE genes. However, only SAVER strengthened the correla-
tions between lowly expressed DE genes without generating
false positive gene-gene -correlations between independently
drawn genes (Figure 1A). Since SAVER models expression data
using a negative binomial, it is expected to perform well on this
simulated data. MAGIC and dca generated very strong false
positive correlations (r > 0.75) at all expression levels, whereas
DrImpute, which only imputes zero values, created false positive
correlations mostly among lowly expressed genes. Knn-smooth
and scImpute produced a few false-positive correlations among
moderately-expressed genes using default parameters.

Choice of parameter values has a large influence imputation
results (Figure 1B). Five of the imputation methods required
the user to set at least one parameter a priori, only SAVER did
not. We varied the thresholds sclmpute and DrImpute use to
determine which zeros to impute. For scImpute some of the lower
and moderate expression values were imputed even at a very strict
probability threshold (p > 0.8), but changing the threshold had
little effect on the imputation. As expected for Drlmpute, imputing
a greater proportion of zeros generated more false positive gene-
gene correlations. Knn-smooth and MAGIC both perform data
smoothing using a k-nearest-neighbour graphs between cells.
Increasing the number of nearest-neighbours (k) produces
smoother data and more false-positive correlations (Figure 1B).
MAGIC provides a default value for k but no indication of how
this parameter should be adjusted for different sized datasets,
whereas knn-smooth provided no default value but a rough
suggestion to scale the value depending on the total number of
cells. MAGIC also utilizes a second parameter, time (¢), for the
diffusion process acting on the graph which by default is algo-
rithmically estimated for the dataset. Longer diffusion times

Page 5 of 35



A Unimputed sclmpute
LS L
LB =

Unimputed (log) Drimpute

F1000Research 2019, 7:1740 Last updated: 25 APR 2019

B T T T T T T T T 1
- - -1 -0.75 05 -0.25 0 0.25 05 0.75 1
Correlation
SAVER sclmpute Drimpute dca
o e e py Q ———— =
- - - 0 - ;:9:8:9:%~o-o-°
@© | L6 0 o | ____ o L8 © So-=sl
© g © |--20—o0—o0—o0—o i o e
© [000000000° © |07 © |o-0-0-0-9° ©
(<2 B c - S |77 =]
<~ ] ~ ] ~ ] - <
(=] o =] _-720-0 (=]
o o o ,;o—f’/-' N
o o o 07~ o
O==D-==0==0==D P-4
S loooco00000000C0 S Ho* S lo-0-0202" 2
T T T T T T T T T T 11 T T T T T T T T T T T T T T 11 T T T T T 1
Raw 02 04 06 08 1 Raw 06 04 02 O Raw 05 0.3 0.15 0.05 5 20 40 64
Percent of Genes Dropout Threshold Remaining Zeros Hidden Layer
MAGIC MAGIC knn
(=) o o
e 4 =0~ O0=0=0—~0=0 = -0=20=0=0=R={=F - 7 - 0=0=0=0
_=0=9% 27 e = - 5=6=0797%
«© _| /// //{/ g n //// &// - g | //’/,_
e W :’ Y/ /A .
o |9 2 o |0 / o |07 Quality Scores
© © © :6”9 o TPR
3 3 3 25 o FPR
o ~ ~ / — Mean
© © © o --- 95%Cl
o o = -©
= S S e

T T T T T T T T 1
Raw 2 3 4 5 6 7 8
Diffusion time

Raw 10 30 60
K neighbours

1 T 1T 1 T T 1
Raw 10 30 60
K neighbours

Figure 1. False gene-gene correlations induced by single-cell imputation methods. (A) Gene-gene correlations before and after imputation
using suggested parameter values: SAVER (all genes), MAGIC (k=12, t=3), knn (k=50), sclmpute (threshold=0.5), Drimpute (remaining
zeros=0), dca (hidden layer size=32). Coloured bars indicate genes highly expressed (red) or lowly expressed (blue) in one cell population
vs the other, or genes not differentially expressed between the populations (grey). Genes are ordered left to right by DE direction then by
expression level (high to low). (B) False positive and true positive gene-gene correlations (p < 0.05 Bonferroni multiple testing correction) as
imputation parameters are changed. “Raw” indicates results for unimputed data. Dashed lines are 95% Cls based on 10 replicates.

produce smoother data and more false positives. Autoencod-
ers involve a large number of parameters and these can have a
large effect on performance (Hu & Greene, 2018). For simplic-
ity, we only considered the size of the hidden layer in this study.
A larger hidden layer slightly reduced the tendency to generate
false-positive gene-gene correlations.

These simple simulations contained only two cell-types and no
technical confounders such as library-size or inflated dropout
rates that are observed in some scRNA-seq datasets. For a more

comprehensive evaluation of imputation methods we simulated
data using Splatter (Zappia et al., 2017). We simulated data with
1,000 cells split into 2-10 groups and 1,000-5,000 genes of
which 1-30% were differentially expressed across the groups.
We considered four different levels of zero inflation and no zero
inflation (Table 2). Each simulated dataset was imputed with
each method using the default parameters (Table 1). To score
each imputation we considered the accuracy of identifying
differentially expressed genes between the groups using the
non-parametric Kruskal-Wallis test (Kruskal & Wallis, 1952).
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None of the imputation methods significantly outperformed the
others or the unimputed data based on the sensitivity and spe-
cificity. While both knn-smooth and MAGIC have increased
sensitivity, they have very low specificity, whereas SAVER
and sclmpute are very similar to the unimputed data with high
specificity but relatively low sensitivity (Figure 2A & B). Drlm-
pute and dca were in between the two extremes with somewhat
higher sensitivity and lower specificity than SAVER and scIm-
pute. Both scImpute and Drlmpute are designed specifically to
only impute excess zeros but neither showed a clear improve-
ment over the raw counts when the simulations contained various
levels of zero inflation (Figure 2A & B). By contrast, both
smoothing methods, MAGIC and knn-smooth, retained rela-
tively high sensitivity even at high dropout-rates, albeit with low
specificity.

All methods except SAVER readily introduced false-positive
differential expression, as demonstrated by a drop in specificity,
when 30% of genes were DE (Figure 2D). We also observe a
significant but smaller drop in specificity for the normalized
but unimputed data. We hypothesize that slight biases when
correcting for library-size in the presence of strong biological
differences may be amplified by the imputation methods. Biases
due to counts-per-million library-size normalization, in the pres-
ence of strong DE are a known issue from bulk RNASeq analysis
(Bullard er al., 2010). Both MAGIC and knn-smooth automati-
cally use counts-per-million to normalize data before smoothing,
and dca using log-transformed data to estimate library-size in
its model which explains why it displays similar bias to
DrImpute, which imputes log2-normalized data (Figure 1A).

Importantly, when the trade-off between sensitivity and specifi-
city was considered across significance thresholds we found that
imputation methods generally performed worse than the raw data
(Figure 2E). This indicates that similar sensitivities to those
observed in imputed data could be achieved with a higher
specificity by simply lowering the significance threshold for the
DE test. The only exception is SAVER which performed almost
identically to the unimputed data. Overall, model-based methods
performed better than smoothing-methods when both sensitivity
and specificity are taken into account.

It is possible that the bulk of false-positives generated by impu-
tation methods result from small biases or sampling noise being
amplified to reach statistical significance. If this is true, then
filtering DE genes by magnitude in addition to significance
should restore the specificity of such tests on imputed data. We
observed this to be the case when an additional threshold was
set based on the Xth percentile highest log2 fold-change across
the whole dataset (Figure 3). However, sensitivity also declined
as the fold-change threshold was made more stringent. Again,
we observe that data-smoothing offers a worse trade-off between
sensitivity and specificity than the un-imputed data, whereas
model-based imputation is very close to the un-imputed data.

Splatter is a widely used simulation framework for scRNA-seq
but may not fully capture the complexities of real scRNA-seq
data. To test the performance of each imputation method on real
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scRNA-seq data we selected 12 tissues from the Tabula Muris
database (Tabula Muris Consortium ef al., 2018) and applied the
imputation methods to the Smart-seq2 and 10X data separately.
Since the ground truth is not known for these data, we selected
two cell-types from each dataset and permuted the expression of
those genes that were not differentially expressed between them
(p > 0.2) to generate a set of genes that we could confidently
consider as being not differentially expressed (Methods). Using
these as ground truth we could estimate the number of false posi-
tive differentially expressed genes introduced by each imputation
method. Strikingly, we observed a very high variability between
datasets which appears to be unrelated to the experimental
platform (Figure 4A & B). MAGIC, dca and knn-smooth consist-
ently produced large numbers of false positives (20-80%). Whereas,
DrImpute and SAVER were extremely variable producing few
to no false positives in some datasets and over 90% false positives
in others.

Imputation methods generated more false-positives in the sparser
10X Chromium data than on the higher depth Smart-seq2 data.
This was not due to genes failing to conform to the negative
binomial distribution (Figure S2). Rather, it is likely due to rela-
tively stronger real signals and greater power in the large 10X
datasets as seen in our splatter simulations (Figure 2C & D), or
due to biases in library size correction. We found that dca, MAGIC,
knn-smooth, SAVER and scImpute tend to bias all the permuted
genes in the same direction (Figure S3), though interestingly
the direction of the bias depends on the method with MAGIC
and SAVER biased in one direction and knn-smooth and
scImpute biased in the opposite direction. Dca was less consist-
ent, sometimes being more similar to MAGIC and sometimes
more similar to knn-smooth. This suggests an error in library-size
correction is responsible for their poor performance on some
datasets. In contrast, Drlmpute imputed genes in random
directions suggesting it is amplifying random noise in the dataset.

To complement the false positives in the permuted data, we used
a marker being associated with the same cell-type in both 10X
and Smart-seq2 data as evidence that a gene is a “true” marker.
This was a necessary but flawed assumption, since the complete
list of true markers is not known. Systematic differences in
cell-size, and hence gene-detection rates, may result in reproduc-
ible biases in imputation across multiple datasets. In addition,
even if markers are randomly associated to cell-types, a portion
will agree just by chance. Thus, the proportion of irreproduc-
ible markers should be considered an underestimation of the true
number of erroneous markers. We identified marker genes using
a Mann-Whitney-U test, comparing one cell-type to the others
in that tissue. Markers were selected by significance (5% FDR)
and magnitude (AUC > 7). Each marker was assigned to the
cell-type for which it had the highest AUC. To prevent differ-
ences in power from affecting the results, reproducibility was
measured as the fraction of those markers that were significant
in both dataset that were also markers for the same cell-type
(Figure 5).

All of the imputation methods increased the absolute number of
reproducible significant markers (Figure S4). However, these
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Figure 2. Accuracy of detecting differentially expressed (DE) genes in splatter simulations before and after imputation with each
method. (A & B) Zero inflation decreases sensitivity of DE which most imputation methods fail to correct. (C & D) Strong true signals (high
proportion of DE genes) decreases specificity particularly for data-smoothing methods. (E) Average ROC curves across all simulations, solid
dots indicate 5% FDR. Counts were normalized by total library size prior to testing DE, and “logcounts” are log2(normalized counts+1).

Page 8 of 35



F1000Research 2019, 7:1740 Last updated: 25 APR 2019

SAVER sclmpute Drimpute
o | — o >
© _| « ]
o o
© _| ©
o O o O
5] 5]
O O
[ D <«
o 7 <
o | N
o o (
7 —6— Sensitivity
o | o | —o— Specificity
o o
T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Magnitude Threshold (%) Magnitude Threshold (%) Magnitude Threshold (%)
dca MAGIC knn
o | o e
@® ] @© @ _|
o o o
© ] © © |
(O =] O =] [ =]
5] 5] 5]
O O O
[ N < [
o 7 <IN o 7
N N N
o o o
—e— Sensitivity
o | o _| o _| —e— Specificity
o o o
T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Magnitude Threshold (%) Magnitude Threshold (%) Magnitude Threshold (%)

Figure 3. Filtering by the magnitude of expression differences restores specificity in imputed data. Sensitivity (green) and specificity
(blue) of each imputation method applied to the splatter-simulated data, when restricting to only the top X% of genes by fold-change. Dashed
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were mixed in with a larger number of irreproducible markers between methods (Figure S6). Overall 5-35% of markers were
(Figure 5). Without imputation, 95% of genes that were signifi- assigned to different cell-types depending on the imputation
cant markers in both datasets were highly expressed in the same  method(s) used. As we observed for the permuted genes, imputa-
cell-type. After imputation, this dropped considerably depend- tion methods tended to two different groups depending on their
ing on the AUC threshold. Decreasing the magnitude threshold  particular bias, one containing MAGIC, SAVER and dca, the
led to more markers assigned to contradictory cell-types in the other containing scImpute, Drlmpute and knn-smooth. This
imputed Smart-seq2 and 10X Chromium datasets. Unimputed data discrepancy is concerning, since it could cause the biological
retained >90% concordance in cell-type assignments of signifi- interpretation of a dataset to depend on the choice of imputation
cant markers regardless of the AUC threshold, this fell to 70-80% method.
in imputed data when a low AUC threshold is used. However,
employing an AUC threshold of 0.9 increased reproducibility Inspection of the false positives generated by imputation of the
in imputed data back to 95% while retaining more markers than permuted real data revealed method-specific distortions of the
in the un-imputed data. When we considered the overall con- gene expression values (Figure 6). SAVER had little effect on
cordance of the marker test results across dataset, we found that the distribution shape, but did eliminate zeros from the data.
the un-imputed data had the highest concordance in every tissue scImpute and DrImpute both tended to make the distribution
(Figure S5). more gaussian. In contrast, MAGIC and knn-smooth tended to
generate bimodal expression distributions. The tendency towards
When comparing across imputation methods applied to the bimodality could be problematic for downstream analysis since
same Tabula Muris dataset, we found variable concordance many methods, e.g. PCA and differential expression, assume
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Figure 4. High variability in false positives induced by imputation across datasets regardless of sequencing technology. (A) Smart-
seq2 datasets, (B) 10X Chromium datasets. Non-differentially expressed genes were permuted prior to imputation.

either negative binomial or gaussian distributions. Many of these
genes were differentially expressed after imputation, despite
being permuted previously. Interestingly, the direction of dif-
ferential expression was not always consistent across imputation
methods, for instance Zfp606 was more highly expressed in PP
cells than A cells after imputation using MAGIC but the inverse
was true after imputing with knn-smooth.

Discussion

We have shown that imputation for scRNA-seq data may intro-
duce false-positive results when no signal is present. On simu-
lated data all the methods except SAVER generated some degree
of false positives (Figure 1 & Figure 2). We find the fundamen-
tal trade-off between sensitivity and specificity, inherent to their
definition, cannot be overcome with imputation (Figure 2 &
Figure 3). On permuted real data, imputation results were more
variable (Figure 4), and even SAVER generated large numbers
of false positives in some datasets. Considering a scenario where
a signal is present, we found that imputation also reduced the

reproducibility of marker genes, unless strict magnitude thresh-
olds were imposed (Figure 4 & Figure 5). In addition to false-
positives, distortions in expression distributions (Figure 6) may
cause imputed data to violate assumptions of some statistical tests.

We found that different imputation methods favour either
sensitivity or specificity but that none of them result in an over-
all improvement for detecting differential expression (Figure 2).
MAGIC, dca and knn-smooth which are data-smoothing meth-
ods, as such they adjust all expression values not just zeros.
Since they impose larger alterations on the data, these methods
generate many more false positives than methods which only
impute zero values. They also have a greater sensitivity, although
a similar sensitivity could be achieved by simply reducing
stringency of the significance test which would generate fewer
false positives. In contrast, model-based methods which only
impute low expression values, generated fewer false positives
but had minimal improvements to sensitivity. Adding an effect
size threshold can reduce false positives generated by imputation
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Figure 5. Reproducibility of marker genes can be restored in imputed data using a strict effect-size threshold. (A-G) Markers were
identified in 10X Chromium and Smart-seq2 data for six different mouse tissues. The average number of markers (bars, left axis) and
proportion reproducible across both datasets (line, right axis) are plotted. Only significant markers (5% FDR) exceeding the AUC threshold
were considered. (H) Proportion of markers that were unique to the Smart-seg2 (blue, SS2), or 10X Chromium (yellow), or both (dark grey).

and shift the trade off back to lower sensitivity but higher
specificity (Figure 3, Figure 5).

These trade-offs reflect the fundamental limitation of current
approaches to single-cell RNASeq imputation, namely that the
methods considered here only use the information present in
the original data. Hence no new information is gained, making

it analogous to simply lowering the significance threshold of
any statistical test applied to the data (Fawcett, 2006). However,
as large reference datasets such as the Human Cell Atlas (Regev
et al., 2017; Rozenblatt-Rosen er al., 2017), and equivalent
projects in other species (Han er al., 2018; Plass et al., 2018;
Tabula Muris Consortium et al., 2018; Zeisel et al., 2018) are
completed it will be possible to employ methods which borrow

Page 11 of 35



F1000Research 2019, 7:1740 Last updated: 25 APR 2019

At el Lo 40444
WOt
LT
LI LS,
TTRTIITIY

Figure 6. Examples of false positive DE induced by imputation of Pancreas Smart-seq2 data. Unimputed indicates the permuted
normalized log-transformed expression. Red = PP cell, Blue = A cell. * = p < 0.05, ** = significant after Bonferroni (q < 0.05) correction.

information from them for imputation such as the recently released
SAVER-X method (Wang er al., 2018). However, reference-
based imputation is limited by the completeness of the exter-
nal dataset. Alternatively, models could be developed to use
gene-gene correlations derived from large external databases of
expression data (Obayashi er al., 2008), while more generalizable
such methods may not capture cell-type specific relationships.

In our simulations, we have employed the conservative
Bonferroni correction and we have ignored potential confound-
ers, such as batch-effects, that imputation methods could mistake
for the true structure. Thus, the false-positive rates shown here
should be considered underestimates of the true false-positive rates.
Similarly, technical confounders and random chance will generate
some degree of agreement between markers found in two data-
set, which we did not account for in the analysis of Smart-seq2
and 10X Chromium datasets, which again results in underesti-
mating the false-positive rates in imputed data. False-positives
resulting from imputation may be much higher than those
observed here in the worse case scenario of strong batch-effects,
differing cell-size within a sample, and confounding variabil-
ity such as stress response. Since imputation will amplify any

and all possible signals, including random noise, we expect
confounding signals to be amplified as well.

We have shown that the circularity induced by imputation causes
the outputs of imputation methods to violate the assumptions
of statistical tests commonly applied to single-cell RNA-seq.
This inflates the number of false-positive gene-gene correla-
tions, cell-type markers, and differentially expressed genes. In
general, our results suggest that it is better to decrease the sig-
nificance threshold applied to the test than to apply an imputation
method to increase sensitivity in sparse datasets. However,
imputation may still be useful for visualization of single-cell
RNA-seq data since it exaggerates existing structure within the
data. Of the methods we tested, SAVER was the least likely to
generate false positives, but its performance was variable when
tested on real data.

If imputation is used, combining SAVER with an effect size
threshold is the best option to avoid irreproducible results. Alter-
natively, verifying the reproducibility of results across multi-
ple datasets or multiple imputation methods can eliminate some
false positives. However, our results highlight that statistical tests
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applied to imputed data should be treated with care. Moreover,
as our study only focused on the expression levels, we cannot
exclude the possibility that imputation will be beneficial when
considering other aspects, e.g. clustering or pseudotime align-
ment. Although a previous benchmarking study showed good
results for positive controls, our study highlights the importance
of considering negative controls when evaluating imputation
methods.

Data and software availability

Tabula Muris data

Smart-seq2 https://doi.org/10.6084/m9.figshare.5715040.v1
(Consortium, The Tabula Muris, 2017a).

10X Chromium https://doi.org/10.6084/m9.figshare.5715040.v1
(Consortium, The Tabula Muris, 2017b).

R packages
MAGIC: Rmagic (v0.1.0) https:/github.com/KrishnaswamylLab/
MAGIC

DrImpute: DrImpute (v1.0) https://github.com/ikwak2/DrImpute

scImpute: https://github.com/Vivianstats/

sclmpute

scImpute(v0.0.8)

SAVER: SAVER(v1.0.0) https://github.com/mohuangx/SAVER

Supplementary material
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Knn-smooth: knn_smooth.R (Version 2) https://github.com/
yanailab/knn-smoothing

Scater: scater(v1.6.3) : https://www.bioconductor.org/packages/
release/bioc/html/scater.html

Splatter:  splatter(v1.2.2)
release/bioc/html/splatter.html

https://bioconductor.org/packages/

Permute: permute(v0.9-4)
ages/permute/index.html

https://cran.r-project.org/web/pack-

Python/anaconda packages:
Dca : dca(v0.2.2): https://github.com/theislab/dca

Custom scripts: https://github.com/tallulandrews/F1000Imputation
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Referee Report 25 April 2019

https://doi.org/10.5256/f1000research.20056.r45285

v

Simone Tiberi
University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland

The authors have addressed all the comments | made to Version 1.

In my initial review | made numerous comments: | would like to thank the authors for their replies and for
the time spent addressing them.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Statistics, Bioinformatics, Transcriptomics, (single cell) RNA-seq, Biostatistics,
Systems Biology.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 15 March 2019

https://doi.org/10.5256/f1000research.20056.r45284

v

Charlotte Soneson
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

In the revised version, the authors have nicely addressed all my comments from version 1.

There are a few places in the manuscript where the text should be updated to reflect the inclusion of an
additional method, e.g. in the last paragraph of the Introduction.

Also, the last sentence in the Background section of the Abstract seems to be missing a word (or should

rather be split into two sentences), and the second sentence of the Results has the same passage
repeated twice.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, (single-cell) RNA-seq, Benchmarking
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 12 March 2019

https://doi.org/10.5256/f1000research.20056.r45283

v

Jean Fan [ 1.2
T Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

The authors have done an excellent job addressing my concerns in this review. | have the following minor
comments, primarily for clarification in the text:

Comments:
® | find it very difficult to distinguish the colored lines used in the new Figure 2E and Figure S4 (in
particular, the counts, log counts, and knn lines). Please change one of these lines to red or
another more spectrally distinguishable color. For example, the colors in Figure 4 are easier to
distinguish.

® SAVER, MAGIC, and dca seem to introduce more contradictory markers compared to knn,
Drimpute, and scimpute (Figure S6). Is this because of the underlying methodological biases
discussed on page 9? Or should users be aware that using SAVER, MAGIC, and dca may
introduce more contradictory differential expression results? Please clarify how users should
interpret and act on these findings.

® The authors note that filtering by effect size restores specificity of identified differentially expressed

genes in the imputed data. Does this effect size filtering also fix the contradictory genes issue? Or
are there still contradictory genes even after the effect size filtering? Please clarify.

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: single-cell methods development, bioinformatics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 11 March 2019

https://doi.org/10.5256/f1000research.20056.r45286

v

Stephanie Hicks
Johns Hopkins Bloomberg School of Public Health (JHSPH), Baltimore, MD, USA

The authors have addressed all of my comments from Version 1. Also, | want to thank the authors for their
thoughtful responses to my comments.

Competing Interests: No competing interests were disclosed.

Page 16 of 35


https://doi.org/10.5256/f1000research.20056.r45283
http://orcid.org/0000-0002-0212-5451
https://doi.org/10.5256/f1000research.20056.r45286
http://orcid.org/0000-0002-7858-0231

FIOOOResearch F1000Research 2019, 7:1740 Last updated: 25 APR 2019

Reviewer Expertise: statistics, scRNA-seq, genomics, data science

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 06 December 2018

https://doi.org/10.5256/f1000research.18156.r40239

?

Stephanie Hicks
Johns Hopkins Bloomberg School of Public Health (JHSPH), Baltimore, MD, USA

The authors Andrews and Hemberg provided an insightful analysis assessing whether or not false
positives (or capturing false signals) are introduced by imputation methods into scRNA-seq data.
Previous papers have only assessed true positives (or positive controls or ability to recover true signal).
The authors considered both model-based (SAVER, Drimpute, scimpute) and smoothing-based
(knn-smooth, MAGIC) imputation approaches where the former infers only the missing values and the
latter smooths all the data (nonzero and zeros).

| have a few suggestions and questions that | believe would help the manuscript:

1. In the simulations (negative binomial and/or Splatter), my understanding is that the authors did not
consider a simulation with batch effects (linear or non-linear, global effect or just a portion of the
genes), and only considered dropouts in the Splatter simulation. An example with batch
effects might be more realistic for scRNA-seq data from real biological experiments because batch
effects have been shown to introduce false signals in data (Leek, 2010'). My concern is that the
false positive signals reported here would actually be larger or more extreme in real scRNA-seq
data.

2. Could the authors explain the reason for using Bonferroni instead of Benjamini-Hochberg (BH) in
correcting for multiple testing? | believe that BH is more commonly used in the context of
high-throughput computational biology and genomics. Was it an intentional choice to impose a
very conservative correction? Also, it would be interesting to use e.g. BH or even a more
modern-controlling FDR methods (e.g. IHW from Wolfgang Huber's group). Hopefully this would
only improve the ability to detect the true positives (e.g. positive controls), which leads me to my
next question.

3. As sensitivity and specificity was considered in the Splatter simulations (Figure 2), could the
authors show an ROC curve (e.g. averaged across the 60 scRNA-seq count matrices)?

4. In the 'Permuted Tabula Muris datasets' section, the authors noted they used Euclidean distance
as a form of similarity between two cell types. What about using correlation-based similarity
measures instead of Euclidean which has been shown to be highly susceptible to the number of
dropouts?

Page 17 of 35


https://doi.org/10.5256/f1000research.18156.r40239
http://orcid.org/0000-0002-7858-0231

FIOOOResearch F1000Research 2019, 7:1740 Last updated: 25 APR 2019

5. For the approaches that were applied to the log2 transformed and normalized datasets, did the
authors consider normalization methods specific for single-cell (e.g. scnorm or scran)? CPM has
been shown to be not appropriate for scRNA-seq data (Vallejos et al., 20172), so I'm wondering if
using a more appropriate normalization method improves the results any?

6. | think one of the biggest concerns is the lack of reproducibility from certain imputation methods (as
a side note, Figure 4C was confusing for me and | might suggest the authors consider illustrating
this result a different way). This suggests more development is needed to make imputation
methods more robust or an external dataset is needed (similar to using haplotype information for
GWAS data). Could the authors comment on what they recommend? As this is a good example of
a benchmarking paper comparing different imputation methods, | think it would be really useful for
the authors to provide a set of recommendations for users.
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Yes

Is the work clearly and accurately presented and does it cite the current literature?
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Yes
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Yes
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Yes

Are the conclusions drawn adequately supported by the results?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: statistics, sScRNA-seq, genomics, data science

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Tallulah Andrews, Wellcome Trust Sanger Institute

Thank you for the helpful suggestions, we have addressed all comments below and in the updated
version of the manuscript:

1. The Reviewer raises a very important point regarding batch effects. We agree that they are likely
to make the situation worse for real datasets. However, they are still not well understood and differ
greatly between studies in magnitude and genes affected making it difficult to simulate them well.
We used Splatter to add small batch effects to all genes in our simulated datasets but this had
relatively little effect on the imputation methods’ overall efficiency, however manual inspection of
some of them showed that in some cases imputation methods can mistake batch effects for the
real underlying structure. We have added this consideration to the Discussion.

2. This was a deliberate choice both (a) to be conservative and (b) to reduce the impact of
imputation methods distorting the p-value distribution. We have clarified this in the text
(Discussion: paragraph 4, Methods: Negative Binomial Simulations). This was specifically used for
the Negative Binomial simulation as they did not mimic real single-cell datasets very well since
they had many genes with very sharp differences between cell-types, and for testing the
false-negatives in the permuted Tabula Muris datasets to avoid biases resulting from how the
imputation methods affected genes that were actually differentially expressed in those datasets.
For the splatter simulations and reproducibility of marker genes we used the more typical
Benjamini-Hochberg/FDR correction since these better reflect real single-cell datasets and we
were considering the ability to call true positives not specifically focusing on false positives. This
has been clarified in the text (Methods: Splatter Simulations).

3. This was requested by another reviewer as well and we have added ROC curves to Figure 2.

4. We agree with the reviewer that Euclidean distance is susceptible to the number of dropouts.
However, we only used the Euclidean distance only for picking which two cell-types to consider for
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the permutations thus has very little importance to our analysis, we could just as easily have picked
cell-types at random, we only chose the two most similar to increase the number of genes that are
not differentially expressed between the cell-types.

5. Only one method was designed to be run on already log2 transformed and normalized datasets
(Drlimpute), while several others (MAGIC, knn) internally apply CPM normalization. Thus, for
consistency we used CPM for Drimpute. In addition, SCnorm is slow and scran frequently returns
negative size factors unless one manually tunes its parameters for each dataset. Because of the
high-throughput nature of our benchmarks we chose not to use these methods.

6. We have added recommendations for when and which imputation methods should be used to
the Discussion (paragraph 5-6).

Competing Interests: Author of the article.

Referee Report 06 December 2018

https://doi.org/10.5256/f1000research.18156.r40875

?  Charlotte Soneson
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Andrews and Hemberg present an interesting evaluation of imputation and smoothing methods for
scRNA-seq, focusing on false positive signals. Five recent imputation/smoothing methods are compared
based on whether they:
1. Introduce false correlations between genes in a Negative Binomial simulation without dropouts.
2. Accurately identify differentially expressed genes in simulated data with different degrees of
dropout.
3. Induce false positives in differential expression analysis of permuted real scRNA-seq data.
4. Lead to reproducible sets of differentially expressed genes in data sets generated with different
platforms.
The paper treats a relevant subject and is generally well written and easy to follow. Below are suggestions
for clarifications and a few additions, which | feel would strengthen the paper and provide additional
guidance for the reader in determining which, if any, method to use.

Major comments:

1. As the authors note, the evaluated methods are based on different distributional assumptions.
Since the goal of the imputation is to retrieve the "true underlying signal”, performance is likely to
be strongly affected by the distribution of the data used for evaluation. In the evaluation of falsely
induced correlations (a), it would thus be informative to consider different plausible distributions
(not only the Negative Binomial), and compare the performance of the methods. In order to avoid
making distributional assumptions, perhaps an appropriate bulk RNA-seq data set could also be
useful at this stage.

2. It would be useful to explicitly spell out the underlying models used by each of the methods, as well
as the type of input that they were provided with (raw counts or log-transformed normalized values)
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and the scale of the output (count or log-count scale) in Table 1. | was also wondering whether
correlations in (a) were always calculated on the count scale, or whether they were calculated on
the log-scale for some methods. It might be useful to also show the correlations with unimputed
log-transformed data in Figure 1A, since not all cells have exactly the same library size/size factor.

Depending on the type of protocol used for the library preparation, scRNA-seq data could have
different distributional properties. Since the authors include both SmartSeg2 and 10x data, it would
be interesting to see a discussion of the relative merits of the different methods related to the
platform used to generate the data. In particular, | was wondering what type of data that the
Splatter simulations most resemble, and whether simulations similar to different types of
scRNA-seq data could be generated. It would be helpful to see a comparison of the main
characteristics of the simulated data and those of real scRNA-seq data, to know to what extent the
conclusions drawn from the simulations can be expected to be generalizable to real data sets.

No attempt is made at explaining the large differences between the Tabula Muris tissues in terms
of the number of false positives in the permuted data. Are there any apparent differences between
the data sets that might (at least partly) explain this? | think it would also be useful to include the
results from unimputed data in Figure 4A-B.

Given that there are already several imputation/smoothing methods available that were not
explicitly evaluated in this study, and that it is likely that this number will increase quickly, it would
be very useful if the evaluation would be easily extendable. As a minimum, it would be useful to
make the code available, preferably structured in a modular way so that new methods can be
easily substituted. Depending on the time and effort required to generate and process the data
sets, these could also be made available.

Minor comments:

1.

It is not immediately clear what the numbers in the "Dropouts (midpoint)" column in Table 2
represent.

| think it would be worth briefly mentioning Figure S1 in the text, rather than just referring to it in the
caption of Figure 1, without discussing its content further.

For the reproducibility evaluation, only the number of significant genes shared between SmartSeq2
and 10x are reported. How many genes were found to be significant in one data set only?

. The panels in Figure 5 would be easier to compare if the y-axes were the same.

There are a few typos and inconsistencies (e.g., knn-smooth/knn smooth, raw-counts/raw counts,
Smart-seq2/Smartseq2, cell-types/cell types) throughout the text.

Itis not always clear how the statistical tests were applied. For the count-scale data, were the
values somehow normalized between cells before the tests were applied? Also, for the
log-normalization of the data, what pseudo-count was used, and how were the size factors
calculated?

Is the work clearly and accurately presented and does it cite the current literature?

Yes

Is the work clearly and accurately presented and does it cite the current literature?
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Yes

Is the study design appropriate and is the work technically sound?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Bioinformatics, (single-cell) RNA-seq, Benchmarking

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Tallulah Andrews, Wellcome Trust Sanger Institute

Thank you for the helpful suggestions, we have made all suggested Minor corrections and have
addressed the Major corrections here and in the revised version of the text:

1. It has been established that read counts from scRNA-seq and bulk RNA-seq (or indeed other
-seq protocols) are well described by some variant of the negative binomial distribution e.g. (Grin
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etal. 2014; Robinson and Smyth 2007), which is why that is the model used here for the
simulations. We have added Figure S1 to the supplementary material showing the Splatter
simulations are a good match for real scRNA-seq data. However, it should be noted that we find
that 10X data was best simulated as a pure negative binomial, whereas Smart-seg2 was best
simulated with a zero-inflated negative binomial as has been remarked upon previously (see:
http://www.nxn.se/valent/2017/11/16/droplet-scrna-seg-is-not-zero-inflated). In addition, when
comparing the fits of the zero-inflated negative binomial distribution and zero-inflated normal
distribution to the Tabula Muris raw counts and log-normalized counts respectively we found the
negative binomial fits the vast majority of genes better than the normal distribution (Table S1).
Thus, we believe the negative binomial to be the most sensible distribution for simulating
scRNA-seq data.

While we agree bulk RNA-seq intuitively seems like a good ‘ground truth’ for scRNA-seq it is
difficult to use it to evaluate imputation since in general simply summing scRNA-seq data is the
closest approximation to bulk RNA-seq by the nature of the experiments. The use of bulk RNA-seq
as a ground truth assumes that the assayed cell-populations are in truth completely homogeneous.
If the “pure” cell populations are a result of sorting this is almost certainly not correct because there
is always a fraction of contaminating cells which will result in a bias towards greater smoothing.
Although cell populations obtained by growing cells in culture are more likely to be homogenous,
they are a poor model for scRNA-seq data obtained from complex tissue samples. There are also
reasons to believe that bulk RNA-seq is not a gold standard for identifying truly differentially
expressed genes. Bulk RNA-seq is generally limited by its low power due to a small number of
samples and the homogenizing effect of bulk samples. Thus, genes that are simply not-detected
as differentially expressed using bulk RNA-seq may in truth be differentially expressed just in a
small subset of cells or with a low fold-change. Moreover, even though there are many common
steps in the experimental protocols for generating bulk and scRNA-seq, it is likely that there will be
effects that are specific to each method. For example: with respect to GC content biases or
gene-length biases, bulk RNA-seq may not be more correct than scRNA-seq. There is no reason
to believe reproducibility across bulk and scRNA-seq is a more reliable method of benchmarking
than reproducibility across different sScRNA-seq datasets which we have performed using the
Tabula Muris data.

2. We thank the Reviewer for this suggestion. We have added information about the input, output
and underlying model to Table 1 and we have also clarified in the Methods how the correlations
were calculated.We have also added the unimputed log-transformed data to Figure 1A.

3. We have added Figure S1 comparing the general properties of the real Smart-seq2 and 10X
datasets with the Splatter simulations. Generally they are a good match, though the 10X data more
closely resemble data simulated with few/no added dropouts, whereas the Smart-seq2 data more
closely resembles data with relatively high numbers of added dropouts.

In another recent publication from the group (Westoby et al. 2018, Genome Biology), we carried
out extensive simulations for comparing isoform quantification methods. We concluded that the
splatter simulations did a very good job at resembling the Smart-seq2 data, but the comparisons to
Drop-seq data were more tenuous (the discussions on the Drop-seq data were removed from the
final version but can be found in the Biorxiv version). 10x data closely resembles Drop-seq data, so
those conclusions are likely to hold.
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4. This was also requested by another reviewer and we have included the unimputed data in Fig
4A and B. We considered the diversity of cell-types, average sequencing depth, number of
detected genes, and number of cells, and the goodness of fit of genes to a zero-inflated negative
binomial distribution (in table S1) as possible explanation for the variability between datasets but
none of them were particularly associated with number of false positives by different methods.
However manual inspection of the effect of imputation on the Tabula Muris data (Figure S4)
suggests the variable performance across datasets is related to biases in correcting for library size,
which would be a combination of differences in cell-size and degree of difference (DE) between
cell-types.

5. We have made the scripts in a modular structure for the comparison available on github. Thus, it
should be straightforward to add methods and re-run the study.

Competing Interests: None (Author responding to reviewer)

Referee Report 03 December 2018

https://doi.org/10.5256/f1000research.18156.r40894

?

Jean Fan 1.2
1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

Overview:

Analysis of single-cell RNA-seq data is often complicated by large amounts of zeros, of some which
represent true lack of expression, while others are reflective of poor capture efficiency or other technical
limitations. Several methods have been developed to impute the zeros and recover the true gene
expression values. Here, Andrews and Hemberg compare the performance of 5 of these single-cell
imputation methods using both simulated data and artificially permuted single-cell RNA-seq data. They
evaluate the extent to which these methods introduce false differential expression. A number of
clarifications are needed to improve the understandability of the manuscript. Performance benchmarks
using additional datasets are also needed to ensure that observed performance differences between
methods are not biased by how well the datasets conform to underlying distributions assumed by each
method.

Major comments:

1. The authors conclude that SAVER is the least likely to generate false positives and should be
favored over the other 4 imputation methods. However, the scimpute manuscript compared its
performance with SAVER to draw conflicting conclusions. | am concerned that the conclusion of
which method is better is being biased by the way the benchmark data has been simulated in both
cases. Here, the authors simulate data using a negative binomial distribution and find that SAVER
had the lowest false positive rate. However, as the authors note, this may be expected, since
SAVER models expression data using a negative binomial model. In this manner, the simulation
results appear rather circular: the method that uses the same model as the simulated data
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performs best. In contrast, in the sclmpute paper, the authors simulate data using a normal
distribution with drop-outs introduced using a Bernoulli distribution and find that SAVER imputation
does not alter the data by much or improve downstream clustering whereas sclmpute recapitulates
the complete data. Please discuss this discrepancy.

. There are genes that are not detected in most single-cells due to poor capture efficiency but we

know must be expressed, albeit at low levels, based on bulk RNA-seq, FISH, RT-qPCR, or other
approaches for measuring gene expression. As a result, most previous methods have assessed
performance by comparing imputed values from single-cell RNA-seq against these bulk RNA-seq,
FISH, or RT-qgPCR datasets, typically focusing, as the authors note, on the imputation method's
ability to recover true signals. How often does imputation introduce a significantly differentially
expressed gene in single-cell data that we know should not be differentially expressed based on
bulk RNA-seq, FISH, RT-qPCR, or etc? Bulk RNA-seq and single-cell RNA-seq datasets exist for
both ESC and DEC cells, which were used for benchmarking in the sclmpute paper. Both sorted
and unsorted PBMCs are also widely available in both bulk and single-cell RNA-seq form. A
number of cell lines have also been sequenced by both bulk and single-cell RNA-seq. In general,
the manuscript would greatly benefit from the inclusion of additional benchmarks based on at least
one of these datasets. Including additional datasets will also help mitigate the concern that
SAVER's superior performance over the other methods is simply the result of both the simulated
and the Tabula Muris dataset conforming to the negative binomial model.

The authors find that many randomly permuted genes were differentially expressed after
imputation and furthermore, the direction of the differential expression after imputation was
different for different imputation methods. How frequently do these different imputation methods
lead to these different directions of differential expression and therefore conflicting biological
interpretations? Is Zfp606 the only gene that exhibits this issue suggesting this is a rare event? Or
do conflicts arise frequently?

The authors identify marker genes prior to imputation and note that 95% of marker genes are
significant markers in both SmartSeg2 and 10X datasets for the same tissues. They use this
comparison between SmartSeq2 and 10X datasets to quantify reproducibility. After imputation,
only 80% or so of marker genes were significant in both datasets i.e. decreased reproducibility. Is
this decreased reproducibility just due to significance thresholds being reached in one dataset but
not the other? Are the -log10(p-values) from the Mann-Whitney-U tests correlated before and after
imputation? How do the -log10(p-values) from the Mann-Whitney-U tests correlate between
SmartSeq2 and 10X? Before and after imputation?

Minor comments:

1.

The terms "false positive", "false signal”, and "false positive signal" are used throughout the early
components of the manuscript, including the abstract, before it is defined in the "Permuted Tabula
Muris datasets" section. | initially interpreted "false positive signal" loosely to mean genes that are
not supposed to be expressed but become non-zero after imputation. However, the definition that
the authors are using appears more stringent in that not only does a gene become non-zero after
imputation but it becomes significantly differentially expressed. | appreciate this more stringent
definition since it more directly impacts biological interpretation. Please define "false positive
signal" earlier or use a more specific term like "false differential expression" to minimize confusion
due to terminology.
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2. The terms "irreproducible results", "reproducibility”, etc. are used throughout the early components
of the manuscript, including the abstract before it is defined in the "Reproducibility of markers"
section. l initially interpreted "reproducibility" to mean whether | would get the same results from
running the same imputation algorithm multiple times. Please define these terms earlier or use a
more specific term to minimize confusion due to terminology.

3. The authors note that many imputed markers were assigned to "contradictory cell-types" (page 8).
Please clarify what this means. What fraction of identified markers does this affect? Does this tend
to affect one cell-type i.e. are the markers consistently mixed up between two cell-types?

4. Please clarify which methods were run on raw counts and which were run on log2 CPM in Table 1.
Was a pseudocount used in the log transformation?

5. The authors state that "scRNASeq imputation only draws on structure within the dataset itself" but
this statement should be limited to the scope of the 5 methods currently tested. scRNAseq
imputation methods in the future may draw on external datasets.

6. Figure 1A is very telling. Could a similar figure be included for the Tabula Muris datasets to
visualize the effects of imputation?

7. Readers would greatly benefit from a discussion on when imputation should be used, if at all, given
this observed propensity to introduce false differential expression.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: single-cell methods development, bioinformatics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Tallulah Andrews, Wellcome Trust Sanger Institute

Thank you for the helpful suggestions, we have made all suggested Minor corrections and have
addressed the Major corrections here and in the revised version of the text:

1. Our results broadly agree with the results presented in the scimpute paper, in that SAVER
makes modest adjustments to the data, and MAGIC introduces many false signals, whereas
sclmpute falls in between. However, the sclmpute paper focuses on the ability of the method to
amplify true signals, such as the tightness of clusters, and the strength/detection of true differential
expression, within the data. Whereas, our analysis focused on the tendency to introduce
false-positives. Thus it provides complementary rather than contradictory information.

Since sclmpute uses a zero-inflated normal distribution to approximate log-transformed normalized
counts it is expected that it would outperform other methods when that model is used for the
simulations as in the sclmpute paper. However, RNA-seq data is fundamentally a discrete
non-negative process, thus violating the assumptions of the normal distribution. It has been
established that read counts from scRNA-seq and bulk RNA-seq (or indeed other -seq protocols)
are well described by some variant of the negative binomial distribution e.g. (Griun et al. 2014;
Robinson and Smyth 2007), which is why that is the model used here for the simulations. We have
added Figure S1 to the supplementary material showing the Splatter simulations (zero-inflated
negative binomial) are a good match for real scRNA-seq data. However, it should be noted that we
find that 10X data was best simulated as a pure negative binomial, whereas Smartseq2 was best
simulated with a zero-inflated negative binomial as has been remarked upon previously (see:
http://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated). In addition, when
comparing the fits of the zero-inflated negative binomial distribution and zero-inflated normal
distribution to the Tabula Muris raw counts and log-normalized counts respectively we found the
negative binomial fits most genes better than the normal distribution (Table S1). Thus, we believe
the negative binomial based simulations used here are more relevant to real single-cell RNA-seq
data than the simulations used in the sclmpute paper.
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2. While we agree bulk RNA-seq intuitively seems like a good ‘ground truth’ for scRNA-seq it is
difficult to use it to evaluate imputation since in general simply summing scRNA-seq data is the
closest approximation to bulk RNA-seq by the nature of the experiments. The use of bulk RNA-seq
as a ground truth assumes that the assayed cell-populations are in truth completely homogeneous.
If the “pure” cell populations are a result of sorting this is almost certainly not correct because there
is always a fraction of contaminating cells which will result in a bias towards greater smoothing.
Although cell populations obtained by growing cells in culture are more likely to be homogenous,
they are a poor model for scRNA-seq data obtained from complex tissue samples. There are also
reasons to believe that bulk RNA-seq is not a gold standard for identifying truly differentially
expressed genes. Bulk RNA-seq is generally limited by its low power due to a small number of
samples and the homogenizing effect of bulk samples. Thus, genes that are simply not-detected
as differentially expressed using bulk RNA-seq may in truth be differentially expressed just in a
small subset of cells or with a low fold-change. Moreover, even though there are many common
steps in the experimental protocols for generating bulk and scRNA-seq, it is likely that there will be
effects that are specific to each method. For example: with respect to GC content biases or
gene-length biases, bulk RNA-seq may not be more correct than scRNA-seq. There is no reason
to believe reproducibility across bulk and scRNA-seq is a more reliable method of benchmarking
than reproducibility across different sScRNA-seq datasets which we have performed using the
Tabula Muris data. We attempted to use two datasets (Kolodziejczyk ef al. 2015; Tung ef al. 2017)
for which matching bulk data was available but the results were inconsistent which is not surprising
considering the variability we saw with the Tabula Muris datasets.

3. We have added Figure S6 which shows that the proportion of markers with conflicting directions
across all the Tabula Muris datasets varies from 5% to 35%. We considered the full imputed
Tabula Muris dataset since most genes should have some real differential expression, and thus be
more likely to be consistent across imputation methods than the permuted genes, which contain no
true signal.

4. We apologize that this analysis was not explained clearly. The 95% and 80% are not related to
differences in power or significance thresholds, they refer to the percent of markers that were most
highly expressed in the same cell-type given that the gene was a significant marker in both
datasets. We have clarified this in the text (Results: page 13-14). We appreciate the suggestion for
comparing p-values directly and have added a supplementary figure S5 that displays these
correlations, further reinforcing our original conclusions that imputation results in poorer
reproducibility.

Competing Interests: None (Author responding to reviewer).
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The article investigates how imputation methods of 0 counts in single-cell RNA-seq (scRNA-seq) can
introduce false signals, and hence false positives in downstream analyses. The authors explain how
scRNA-seq data can present an excess of 0 counts, i.e. dropouts, due to technical artefacts, and
introduce a few recent methods that can be used to impute these values. Andrews and Hemberg focus on
a sub-set of 5 imputation methods and investigate, in three scenarios, if these methods introduce false
signals between genes:

1. First, data are simulated from a simple negative binomial (NB) model: most imputation methods

introduce false signals in the data by increasing the correlation between independent genes.

2. Secondly, the authors study the effect of imputation methods on downstream differential gene
expression (DGE) analyses on 60 scRNA-seq datasets simulated via Splatter (with varying
degrees of dropouts and DGE). They find that, compared to the original un-imputed data, albeit
some imputation methods result in higher Sensitivity (i.e. true positive rate), all of them have lower
the Specificity (i.e. true negative rate).

3. Thirdly, they consider several real sScRNA-seq datasets, where counts are permuted to obtain
approximately uncorrelated genes, and investigate how imputation methods affect the ability to
identify marker genes. The authors find that, compared to the un-imputed data, imputation tools
distort expression patterns and increase the number of identified marker genes, although some of
these are likely to be false detections.

The article treats a relevant problem and provides a comprehensive benchmarking of imputation
methods. Overall, the manuscript is clear and its scientific quality is adequate. Below, | suggest several
corrections (and identify a few typos) that hopefully will contribute to improving the quality and clarity of
the work.

Major Comments:
1. In some cases it is unclear to me why you take certain decisions: | feel you should motivate more
your choices (see Minor comments for specific examples).

2. Please provide source code to reproduce all the analysis you present (including obtaining the
simulated and permuted data).

3. There is some redundancy in the description of the data: you first describe in detail how you
obtained the simulated data and the permuted real data in the Methods section, and then you
repeat it again (although with fewer sentences) in the Results section. | would avoid or shorten the
second description in the Results section.

4. Although the paper aims at investigating on false signals introduced by imputation methods, | feel
too much emphasis has been given to false positive results as opposed to jointly considering false
and true positive results. Indeed, the paper shows that imputation methods result in increased
FPs/Specificity, particularly when the original data are not affected by dropouts, but it only
marginally focuses on the increase in TPs/Sensitivity.

More informally, | think you should try to show both sides of the coin and avoid (over-)interpreting
FP results alone. In this regard, to get a joint picture of Sensitivity and Specificity, | think you should
provide (at least for the Splatter simulation) ROC and FDR curves (eventually, also as
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10.

Supplementary figures). Since you perform 60 simulations from Splatter, you might consider global
ROC and FDR plots based on the results from all simulations.

| think that the limitations of the study should be explained more clearly:

5.1) In the permuted real data analysis, all imputation methods find many more marker genes than
the un-imputed data, but the authors mostly focus on the fact that the percentage of “reliable”
identifications decreases. | think that: 1) importance should be given also to the fact that many
more “reliable” marker genes are identified (also referring to the comment above about FPs and
TPs) and: 2) it is essential to explicitly acknowledge that the true state of marker genes is unknown.
Importantly, in Figure 4 A) and B) please add the FPR obtained on the un-imputed data to provide
a baseline comparison.

5.2) In the NB simulation you don’t simulate any dropouts, which represents the worst case
scenario for imputation methods. In this context, | would expect all imputation methods to worsen
downstream results, because there are no dropouts to impute at all. | think you should mention this
more explicitly.

. In Splatter simulations you “considered the effect of four different amounts of added dropouts”.

How mild or extreme were these dropout levels compared to real scRNA-seq data? | would expect
imputation methods to improve the quality of the data as the number of dropouts increases. Did
you try to consider more “extreme” dropout rates?

In Figures 2C and 2D you provide Sensitivity boxplots stratified by dropout rates and Specificity
boxplots stratified by DE. Sensitivity and Specificity should always be examined jointly: for both
stratification cases, please provide both Sensitivity and Specificity plots (eventually, also as
Supplementary figures).

| suggest another round of polish to improve writing and clarity in some parts of the paper. In
particular: adding few commas would facilitate the reading in long sentences; past and present
tenses are sometimes mixed; some sentences seem a bit out of place and could be better
integrated in the flow; | found the last two paragraphs of the Results section a bit hard to follow.

You refer a few times to the fact that you “find a fundamental trade-off between sensitivity and
specificity which imputation cannot overcome”: reading the paper it seems that imputation methods
might be responsible for this. But this trade-off is due to the nature of Sensitivity and Specificity;
indeed, Sensitivity and Specificity are positively correlated by construction: as one moves the
significance threshold, both will increase or decrease. Clearly an ideal method will have Sensitivity
0 and Specificity 1. | think you should remove or edit the sentences referring to this trade-off
(particularly in the Discussion) to clarify that imputation methods are not the cause of this trade-off.

In the Discussion you say that “While imputation in other fields often uses external references or
relationships for the imputation, scRNASeq imputation only draws on structure within the dataset
itself.”. Actually, “canonical” imputation methods do not require an external reference and only use
the available data. While having an additional reference can increase the information at disposal
and hence, potentially, improve the accuracy of imputation tools, | don’t think this is the main
reason why they result in increased false signals. Besides, there are other issues with using an
external reference; e.qg. if the reference is not “similar” to the data-set under study, particularly
concerning their dropouts. | think you could clarify that using an external reference is one of the
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possible ways to improve imputation methods, but keeping in mind that imputation (in general) can
also work without a reference.

Minor Comments:

1) General:
® Throughout the text, you use both “Smart-seq2” and “Smartseq2*; | suggest you use only one, for
consistency.
2) Abstract:
® “since these methods generally rely on structure inherent to the dataset under consideration they
may not provide any additional information.” You clarify this point later in the text but, when | read
the abstract, it was not clear to me what you were referring to. Maybe you could try to be more
explicit here or remove the sentence.
3) Introduction:
®  You cite 4 imputation methods as “under development“ but you only test one. | think you’d motivate
this choice.

®  Typo: “though imputation” -> “through imputation”.

®  GWAS not defined before.

® Typo: “imputation, which only attempt to infer” -> “imputation, which only attempts to infer”.
4) Methods:

® Fig S1: “aka” -> “i.e.” (I would use something more elegant than aka).

® Typo: “as calculated scater” -> “as calculated by scater” ?

®  “ranging from 1073-10/4” -> “ranging 1073-10"4” or “ranging from 1073 to 104"

®  Typo: “different probability distribution” -> “different probability distributions”.

® “When filtering DE genes by effect size, in addition to significance”. This sentence is quite vague,
please be more specific.

®  “Six 10X Chromium and 12 Smartseq2 datasets”. You use words (Six) and digits (12) in the same
sentence to refer to numbers: I'd choose one for consistency.

®  You use two distinct types of DGE tests for the simulated data (Splatter) and the permuted real
data. Please motivate your choice.

®  Typo (?): “for which there exists matching Smart-seq2 and 10X Chromium” -> “for which there
exists matching for Smart-seq2 and 10X Chromium” ?
5) Results:
® “MAGIC provides ... whereas knn smooth provided ...”. Present and past tenses are mixed here: |
suggest you replace “provided” with “provides” to keep consistency with the rest of the manuscript.
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® |n the NB simulation, provide more details on the implementation of the correlation test: how did
you test correlations? What significance level was used to define a significant correlation in Fig 1B
and S1? 0.05?

® |nFigure 1B and S1, | guess that “Raw” refers to the original (un-imputed) data; did |
understand correctly? It was not obvious to me at a first glance, please make it explicit (in the text
or in the Figure caption).

® Fig 2: typo (?): “Different imputation methods choose a different trade-off ...*; | didn’t understand
the use of “choose” in the sentence: is this a typo? If not, can you re-write the sentence in a clearer
way?

® Fig 2: “genes DE” -> “DE genes’.

® |nthe permutation real data analysis, please clarify the concept of filtering genes: do you refer to
independent filtering of genes (based on their estimated FC)?

®  Typo: “the bulk of false-positives ... result” -> “the bulk of false-positives ... results”.

® “|t's possible” -> “It is possible”.

®  “Xth percentile” -> “X-th percentile”.

® “Xth percentile highest log2 fold-change*® -> “highest log2 fold-change X-th percentile”.

® Fig 4 (A) caption: “SmartSeq?2 datasets,” -> “SmartSeq2 datasets.” (a comma separates two Figure
descriptions instead of a full stop).

® Fig 4 (C) caption: “the proportion that were markers” -> “the proportions that were markers”.

® | would change “many of the imputed markers are incorrect” to “some of the imputed markers are
incorrect”. “some” seems more appropriate than “many”, considering that 80-90% of them are
estimated to be true marker genes.

® The second last paragraph of Results sounded a bit contorted to me: | would rephrase itin a
clearer way.

® “The imputation methods produced different distortions of the gene expression values (Figure 6).”
Can you better integrate this sentence in the flow? It seems a bit out of place.

® “PCA and differential expression” -> “PCA and most differential expression tools/methods”.
Tools/methods is missing. | would also add “most” because not all DE methods require NB or
Gaussian distributions (e.g. non parametric methods).

® To facilitate a visual comparison, in Figure 5 | would adjust the left y-axis (Genes #) to have the
same limits in all examples.

®  Fig 6 caption: “significant after Bonferroni correction”; please add the significance level (I assume
0.05).
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6) Discussion:
® |n the second paragraph you first use “these methods generate” and then “MAGIC generated”
mixing present and past tenses; I'd use “generate” in both cases.

® The subject is missing in this sentence: “MAGIC and knn-smooth which are data-smoothing
methods, as such they adjust all expression values not just zeros.” -> | would write something like:
“MAGIC and knn-smooth are data-smoothing methods, as such they adjust all expression values
not just zeros.” Or alternatively, “MAGIC and knn-smooth, which are data-smoothing methods,
adjust all expression values not just zeros.”

® “it's performance” -> “its performance”.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
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Reviewer Expertise: Statistics, Bioinformatics, Transcriptomics, (single cell) RNA-seq, Biostatistics,
Systems Biology.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Tallulah Andrews, Wellcome Trust Sanger Institute

Thank you for the helpful suggestions, we have made all suggested Minor corrections and have
addressed the Major corrections here and in the revised version of the text:

1. We have revised the text and tried to provide motivations for the key decisions.

2. The github repo accompanying the study now contains scripts that can be run to reproduce the
results reported here.

3. We have followed the Reviewer’s suggestion and shortened the descriptions in the Results
section.

4. We have added the true positive rate to Figure 1B, have added Figure S4 showing the increase
in reproducible markers in Tabula Muris datasets, and modified the text to put greater emphasis of
the increase in sensitivity provided by imputation (last paragraph of page 6, p9 paragraph 2, p14
paragraph 1) to clarify that sensitivity is increased by using imputation at the cost of specificity,
however as the ROC plots show (Figure 2 E), to address the reviewer’s concern below, this
increase in sensitivity could be achieved by simply lowing the significance threshold applied to the
statistical test and result in fewer false positives than using an imputation method.

The reviewer raises a good point and we have calculated and included the ROC for the simulated
data in Figure 2 E.

5.1.
1. We have updated the text to highlight the advantage of having a larger number of markers
from imputed data (Figure S4, p14 paragraph 1).
2. We have added the FPRs for the un-imputed data (counts) to both Fig 4A and B, as
expected there were almost none since we used the conservative Bonferroni multiple
testing correction.

5.2. We have highlighted the lack of dropouts in the NB simulations in the text, and explicitly
mentioned the desired behaviour for both model-based imputation and data-smoothing in this
context (Methods: Negative Binomial Simulations).

6. We have adjusted the dropout parameters tested to be more similar to those observed in real
single-cell RNA-seq data (Figure S1 A) and added the average proportion of zeros in the entire
expression matrix for each value to Table 2 to help the readers understand what the different
scenarios correspond to. At the highest level of added dropouts 94% of the matrix was composed
on zeros and all the methods other than MAGIC and knn-smooth had sensitivity < 0.2, and the
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resilience of data-smoothing to high dropout rates has been noted in the text (Results: p9,
paragraph 1).

7. We have followed the Reviewer’s suggestion and now include both Sensitivity and Specificity
plots stratified by dropout rate and proportion of DE genes in Figure 2.

8. We have tried to improve the clarity of the text with a specific focus on paragraphs highlighted by
the Reviewer.

9. The Reviewer raises an important point regarding the fundamental relationship between
sensitivity and specificity. One of the central aims of our paper was to highlight this particular
trade-off and that the effect of most imputation methods is simply to shift the balance between
these quantities. Our goal was to say that this is indeed a relationship that is caused by how these
quantities are constructed and that imputation methods simply favour one side of the trade off or
the other not create it. We have edited the text to better clarify this (Discussion: paragraph 1).

10. The Reviewer raises a good point, we have edited the text appropriately (Discussion:
paragraph 3).
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